Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(21): 11735-11744, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37195014

RESUMO

Lytic polysaccharide monooxygenases have received significant attention as catalytic convertors of biomass to biofuel. Recent studies suggest that its peroxygenase activity (i.e., using H2O2 as an oxidant) is more important than its monooxygenase functionality. Here, we describe new insights into peroxygenase activity, with a copper(I) complex reacting with H2O2 leading to site-specific ligand-substrate C-H hydroxylation. [CuI(TMG3tren)]+ (1) (TMG3tren = 1,1,1-Tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine) and a dry source of hydrogen peroxide, (o-Tol3P═O·H2O2)2 react in the stoichiometry, [CuI(TMG3tren)]+ + H2O2 → [CuI(TMG3tren-OH)]+ + H2O, wherein a ligand N-methyl group undergoes hydroxylation giving TMG3tren-OH. Furthermore, Fenton-type chemistry (CuI + H2O2 → CuII-OH + ·OH) is displayed, in which (i) a Cu(II)-OH complex could be detected during the reaction and it could be separately isolated and characterized crystallographically and (ii) hydroxyl radical (·OH) scavengers either quenched the ligand hydroxylation reaction and/or (iii) captured the ·OH produced.


Assuntos
Cobre , Peróxido de Hidrogênio , Cobre/química , Peróxido de Hidrogênio/química , Hidroxilação , Ligantes , Oxigenases de Função Mista/química , Radical Hidroxila/química , Oxirredução
2.
Inorg Chem ; 61(10): 4292-4301, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35226491

RESUMO

High-valent transition metal-hydroxide complexes have been proposed as essential intermediates in biological and synthetic catalytic reactions. In this work, we report the single-crystal X-ray structure and spectroscopic characteristics of a mononuclear nonporphyrinic MnIV-(OH) complex, [MnIV(Me3-TPADP)(OH)(OCH2CH3)]2+ (2), using various physicochemical methods. Likewise, [MnIV(Me3-TPADP)(OH)(OCH2CF3)]2+ (3), which is thermally stable at room temperature, was also synthesized and characterized spectroscopically. The MnIV-(OH) adducts are capable of performing oxidation reactions with external organic substrates such as C-H bond activation, sulfoxidation, and epoxidation. Kinetic studies, involving the Hammett correlation and kinetic isotope effect, and product analyses indicate that 2 and 3 exhibit electrophilic oxidative reactivity toward hydrocarbons. Density functional theory calculations support the assigned electronic structure and show that direct C-H bond activation of the MnIV-(OH) species is indeed possible.

3.
J Am Chem Soc ; 143(8): 3113-3123, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33591170

RESUMO

We report a unique dynamic morphology transformation of a Ag+-coordinated supramolecular nanostructure accompanying the conversion of complex structures in aqueous solution. In the presence of AgNO3 (1.0 equiv), the achiral bipyridine-based ligand 1G, possessing hydrazine and glycine moieties, preferentially generated a 1D needle-like structure (nanostructure I) based on the 1GAgNO3 complex (1G:Ag+ = 1:1) as a metastable product. Nanostructure I was then transformed into nanostructure II, which was composed of the 1G3Ag2(NO3)2 complex (1G:Ag+ = 3:2) as the thermodynamically stable product. This nanostructure exhibited a 1D helical tubular structure with a uniform diameter via a 2D ribbon as an intermediator, which led to the generation of a circular dichroism (CD) signal with right-handed (P-type) helicity. The observed dynamic transformation was attributed to formation of the thermodynamically favored helical 1G3Ag2(NO3)2 complex. In addition, the helical 1G3Ag2(NO3)2 complex acted as an initiator in the transformation from the 1D needle-like structure to the 1D helical tube via a 2D ribbon. The enhanced ΔG° value of nanostructure II compared to that of nanostructure I confirmed that nanostructure II is thermodynamically stable. More importantly, the transformation of supramolecular nanostructure I to nanostructure II occurred via an "on" pathway, even though the 1GAgNO3 complex was converted to the 1G3Ag2(NO3)2 complex, which did not involve dissociation from nanostructure I into the monomeric 1GAgNO3 complex species. In the kinetic study, the NO3- anion was found to act as an accelerator for the dynamic transformation from nanostructure I to nanostructure II. This result provides the first example of a dynamic transformation of a 1D needle-like structure into a 1D tubular structure via a 2D ribbon structure, accompanied by the conversion of a complex structure and the generation of a large CD signal for the metallo-supramolecular nanostructure. This study may open up new avenues to the understanding of a dynamic morphology transformation process in biological systems.

4.
Chem Commun (Camb) ; 56(66): 9449-9452, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32687135

RESUMO

A mononuclear cobalt(III)-bis(tert-butylperoxo) adduct (CoIII-(OOtBu)2) bearing a tetraazamacrocyclic ligand was synthesized and characterized using various physicochemical methods, such as X-ray, UV-vis, ESI-MS, EPR, and NMR analyses. The crystal structure of the CoIII-(OOtBu)2 complex clearly showed that two OOtBu ligands bound to the equatorial position of the cobalt(iii) center. Kinetic studies and product analyses indicate that the CoIII-(OOtBu)2 intermediate exhibits nucleophilic oxidative reactivity toward external organic substrates.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Cristalografia por Raios X , Ciclamos/química , Cinética , Ligantes , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...